International IER Rectifier

$$
\begin{gathered}
\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=12 \mathrm{Amp} \\
V_{R}=30 \mathrm{~V}
\end{gathered}
$$

Major Ratings and Characteristics

$\left.\begin{array}{|l|c|c|}\hline \text { Characteristics } & \text { Values } & \text { Units } \\ \hline \mathrm{I}_{\mathrm{F}(\mathrm{AV})} \text { Rectangular } \\ \text { waveform }\end{array}\right)$

Description/ Features

The 12CWQ03FN surface mount, center tap, Schottky rectifier series has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Popular D-PAK outline
- Center tap configuration
- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
Case Styles

Voltage Ratings

Partnumber	12CWQ03FN
V_{R} Max. DC Reverse Voltage (V)	30
$\mathrm{~V}_{\mathrm{RWM}}$ Max. Working Peak Reverse Voltage (V)	

Absolute Maximum Ratings

	Parameters	12CWQ...	Units	Conditions	
$\mathrm{I}_{\text {(AV) }}$	Max.AverageForward (PerLeg) Current*SeeFig. 5 (PerDevice)	$\begin{gathered} 6 \\ 12 \end{gathered}$	A	50% duty cycle @ $\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$, rectangularwave form	
$\mathrm{I}_{\text {FSM }}$	Max.PeakOneCycleNon-Repetitive Surge Current (PerLeg) *SeeFig. 7	320 130	A	5μ s Sine or $3 \mu \mathrm{~s}$ Rect. pulse 10 ms Sine or $6 \mathrm{~ms} \mathrm{Rect}$. pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied
$\mathrm{E}_{\text {AS }}$	Non-Rep. AvalancheEnergy (PerLeg)	10	mJ	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{AS}}=2.0 \mathrm{Amps}, \mathrm{L}=5 \mathrm{mH}$	
$\mathrm{I}_{\text {AR }}$	RepetitiveAvalancheCurrent (PerLeg)	2.0	A	Current decaying linearly to zero in $1 \mu \mathrm{sec}$ Frequency limited by T_{J} max. $\mathrm{V}_{\mathrm{A}}=1.5 \times \mathrm{V}_{\mathrm{R}}$ typical	

Electrical Specifications

Parameters		12CWQ...	Units	Conditions		
	Max. Forward Voltage Drop (Per Leg) * See Fig. 1 (1)	0.47	V	@ 6A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	
		0.55	V	@ 12A		
		0.37	V	@ 6A	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	
		0.49	V	@ 12A		
I_{RM}	Max. Reverse Leakage Current (Per Leg) * See Fig. 2	3	mA	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$V_{R}=$ rated V_{R}	
		58	mA	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		
$\mathrm{V}_{\mathrm{F} \text { (TO) }}$	Threshold Voltage	0.196	V	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ max.		
r_{t}	Forward Slope Resistance	21.66	$\mathrm{m} \Omega$			
$\mathrm{C}_{\text {T }}$	Typ. Junction Capacitance (PerLeg)	590	pF	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$ (t	t signal range 100 Khz to 1 Mhz) $25^{\circ} \mathrm{C}$	
$\mathrm{L}_{\text {s }}$	Typical Series Inductance (Per Leg)	5.0	nH	Measured le	to lead 5 mm from package body	

(1) Pulse Width < 300 μ s, Duty Cycle $<2 \%$

Thermal-Mechanical Specifications

	Parameters	12CWQ...	Units	Conditions
T_{J}	Max. Junction Temperature Range (*)	-55 to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Max. Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {thJc }}$	Max. Thermal Resistance (PerLeg) Junction to Case (PerDevice)	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$	DCoperation *SeeFig. 4
		1.5		
wt	Approximate Weight	0.3(0.01)	g(oz.)	
	Case Style	D-Pak		Similar to TO-252AA
	MarkingDevice	12CWQ03FN		

[^0]International

Fig. 1-Max. Forward Voltage Drop Characteristics (PerLeg)

Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage (PerLeg)

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage (PerLeg)

Fig. 4-Max. Thermal Impedance $Z_{\text {thJc }}$ Characteristics (PerLeg)

Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

Fig. 6-Forward Power Loss Characteristics (PerLeg)

Fig.7-Max. Non-Repetitive Surge Current (PerLeg)
(2) Formula used: $\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{J}}-\left(\mathrm{Pd}+\mathrm{Pd}_{\mathrm{REv}}\right) \times \mathrm{R}_{\text {thJC }}$;
$P d=$ Forward Power Loss $=I_{F(A V)} \times V_{F M} @\left(I_{F(A V)} / D\right)$ (see Fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse Power Loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R} 1}=80 \%$ rated V_{R}

Outline Table

Part Marking Information

Tape \& Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for AEC Q101 Level. Qualification Standards can be found on IR's Web site.

International
 ISR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., EI Segundo, California 90245, USA Tel: (310) 252-7105

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier ${ }^{\circledR}$, IR $^{\circledR}$, the IR logo, HEXFET ${ }^{\circledR}$, HEXSense ${ }^{\circledR}$, HEXDIP ${ }^{\circledR}$, DOL ${ }^{\circledR}$, INTERO ${ }^{\circledR}$, and POWIRTRAIN ${ }^{\circledR}$ are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

[^0]: $\left.{ }^{*}\right) \frac{d P t o t}{d T j}<\frac{1}{R t h(j-a)}$ thermal runaway condition for a diode on its own heatsink

